The interplay between genome and network evolution in eukaryotes

نویسنده

  • Like Fokkens
چکیده

BACKGROUND: Although functionally related proteins can be reliably predicted from phylogenetic profiles, many functional modules do not seem to evolve cohesively according to case studies and systematic analyses in prokaryotes. METHODOLOGY: In this study we quantify the extent of evolutionary cohesiveness of functional modules in eukaryotes and probe the biological and methodological factors influencing our estimates. We have collected various datasets of protein complexes and pathways in S. cerevisiae. We define orthologous groups on 34 eukaryotic genomes and measure the extent of cohesive evolution of sets of orthoogous groups of which members constitute a known complex or pathway. Within this framework it appears that most functional modules evolve flexibly, rather than cohesively. CONCLUSIONS: Even after correcting for uncertain module definitions and potentially problematic orthologous groups, only 46% of pathways and complexes evolves more cohesively than random modules. This flexibility seems partly coupled to the nature of the functional module as biochemical pathways are generally more cohesively evolving than complexes. Author’s summary Components of a protein complex or a metabolic pathway strongly cooperate to perform a specific function. Because of this functional interdependence, proteins that form a complex or pathway are expected to be present and absent together in different species. Phylogenetic profiling methods, in which proteins with similar presence and absence patterns are inferred to be functionally linked, are based on this assumption. In this report, we quantify to what extent proteins that together constitute a complex or pathway (a functional module) in yeast are present and absent together (evolve cohesively) in other eukaryotic species. We find that more than half of all complexes and pathways are only partially present in a number of species. It appears that evolution of functional modules is very flexible; components are not indispensable; they can be replaced or reused in a different functional context. This places a limit on how well phylogenetic profiling methods can detect functionally related proteins. Functional modules that evolve cohesively are typically involved in biological processes such as translation and amino acid metabolism.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolution of viruses and cells: do we need a fourth domain of life to explain the origin of eukaryotes?

The recent discovery of diverse very large viruses, such as the mimivirus, has fostered a profusion of hypotheses positing that these viruses define a new domain of life together with the three cellular ones (Archaea, Bacteria and Eucarya). It has also been speculated that they have played a key role in the origin of eukaryotes as donors of important genes or even as the structures at the origi...

متن کامل

Deciphering a global network of functionally associated post-translational modifications

Various post-translational modifications (PTMs) fine-tune the functions of almost all eukaryotic proteins, and co-regulation of different types of PTMs has been shown within and between a number of proteins. Aiming at a more global view of the interplay between PTM types, we collected modifications for 13 frequent PTM types in 8 eukaryotes, compared their speed of evolution and developed a meth...

متن کامل

Energy, genes and evolution: introduction to an evolutionary synthesis.

Life is the harnessing of chemical energy in such a way that the energy-harnessing device makes a copy of itself. No energy, no evolution. The 'modern synthesis' of the past century explained evolution in terms of genes, but this is only part of the story. While the mechanisms of natural selection are correct, and increasingly well understood, they do little to explain the actual trajectories t...

متن کامل

Genome-Scale Metabolic Network Models of Bacillus Species Suggest that Model Improvement is Necessary for Biotechnological Applications

Background: A genome-scale metabolic network model (GEM) is a mathematical representation of an organism’s metabolism. Today, GEMs are popular tools for computationally simulating the biotechnological processes and for predicting biochemical properties of (engineered) strains.Objectives: In the present study, we have evaluated the predictive power of two ...

متن کامل

Genome diversity in microbial eukaryotes.

The genomic peculiarities among microbial eukaryotes challenge the conventional wisdom of genome evolution. Currently, many studies and textbooks explore principles of genome evolution from a limited number of eukaryotic lineages, focusing often on only a few representative species of plants, animals and fungi. Increasing emphasis on studies of genomes in microbial eukaryotes has and will conti...

متن کامل

Gene Family: Structure, Organization and Evolution

  Gene families are considered as groups of homologous genes which they share very similar sequences and they may have identical functions. Members of gene families may be found in tandem repeats or interspersed through the genome. These sequences are copies of the ancestral genes which have underwent changes. The multiple copies of each gene in a family were constructed based on gene duplicati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013